Закон увеличения степени идеальности системы. Законы развития систем Закон увеличения степени идеальности системы

Творчество как точная наука [Теория решения изобретательских задач] Альтшуллер Генрих Саулович

4. Закон увеличения степени идеальности системы

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система - это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т. д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15--20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. л. д. двигателя и т. д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т. д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности - это надежный критерий для корректировки задачи и оценки полученного ответа.

Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

1. Закон полноты частей системы Необходимым условием принципиальной жизнеспособности технической системы является нал и чие и минимальная работоспособность основных частей с и стемы. Каждая техническая система должна включать четыре основные части: двигатель,

Из книги Интерфейс: новые направления в проектировании компьютерных систем автора Раскин Джефф

2. Закон «энергетической проводимости» системы Необходимым условием принципиальной жизнеспособности технической системы является скво з ной проход энергии по всем частям системы. Любая техническая система является преобразователем энергии. Отсюда очевидная

Из книги Танки. Уникальные и парадоксальные автора Шпаковский Вячеслав Олегович

3. Закон согласования ритмики частей системы Необходимым условием принципиальной жизнеспособности технической системы является согл а сование ритмики (частоты колебаний, периодичности) всех частей системы. Примеры к этому закону приведены в гл. 1.К «кинематике»

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

5. Закон неравномерности развития частей системы Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее разв и тие ее частей. Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и,

Из книги Как обманывают автомобилистов. Покупка, кредитование, страхование, ГИБДД, ГТО автора Гейко Юрий Васильевич

8. Закон увеличения степени вепольности Развитие технических систем идет в направлении увеличения степени вепол ь ности. Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении

Из книги Учебник по ТРИЗ автора Гасанов А И

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

Глава 4 В ВЫСШЕЙ СТЕПЕНИ ПОЛЕЗНАЯ СЛЕПОТА Многие проекты германских танков оказались неудачными из-за того, что немцы пытались использовать в них устройства технически еще несовершенные, хотя на первый взгляд и казавшиеся перспективными. К таким неудачным разработкам

Из книги Руководство слесаря по замкам автора Филипс Билл

Определение степени загрязнения Вопрос. Какая изоляция может применяться в районах, не попадающих в зону влияния промышленных источников загрязнения (леса, тундра, лесотундра, луга)?Ответ. Может применяться изоляция с меньшей удельной эффективной длиной пути утечки, чем

Из книги Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г. автора Коллектив авторов

КАЧЕСТВО ДОРОГ В СТРАНЕ ОБРАТНО ПРОПОРЦИОНАЛЬНО СТЕПЕНИ ВОРОВСТВА В НЕЙ Сто шестьдесят восемь лет назад Николай Васильевич Гоголь одной только своей фразой о дураках и дорогах в России обеспечил себе бессмертие. И заметьте – ведь тогда дороги между городами не

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

3. Понятие идеальности

Из книги Windows 10. Секреты и устройство автора Алмаметов Владимир

4. Практическое использование понятия идеальности Кудрявцев А. В. Идеальность - одно из ключевых понятий Теории решения изобретательских задач. Понятие идеальности составляет суть одного из законов (закон повышения идеальности), а также лежит в основе иных законов

Из книги автора

Классификация картриджей по назначению и степени фильтрации В соответствии со стандартами корпусов, картриджи также делятся на серии SL и BB и, соответственно, бывают 5,7, 10 и 20 дюймов.По назначению все картриджи можно разделить на три группы: картриджи для удаления

Из книги автора

Из книги автора

Из книги автора

22. Система с неограниченной растворимостью в жидком и твердом состояниях; системы эвтектического, перитектического и монотектического типа. Системы с полиморфизмом компонентов и эвтектоидным превращением Полная взаимная растворимость в твердом состоянии возможна

Из книги автора

6.3. Прочие методы для увеличения производительности Для того, чтобы увеличить производительность, можно просто-напросто докупить детали, которые сейчас стоят не так дорого, чтобы не было средств их приобрести. В основном, кто хочет увеличить производительность их

За реализацию полезных функций технической системы необходимо расплачиваться.

Факторы расплаты включают различные затраты на создание, эксплуатацию и утилизацию системы, всё, чем общество должно расплачиваться за получение данной функции, в том числе и все создаваемые системой вредные функции. Например, в число факторов расплаты за перемещение людей и грузов автомобилями входят не только стоимость материалов и затраты труда на изготовление и эксплуатацию, но и вредное влияние автомобиля на окружающую среду как непосредственно, так и в процессе его производства (например металлургические процессы); затраты на строительство гаражей; место, занятое гаражами, заводами и ремонтными предприятиями; гибель людей при авариях, связанные с ними психологические потрясения и т.д.

Как уже было отмечено, технические системы развиваются. В ТРИЗ развитие технической системы понимается как процесс увеличения степени идеальности (И), которая определяется как отношение суммы выполняемых системой полезных функций (Ф п) к сумме факторов расплаты (Ф р):

Конечно, данная формула отражает тенденции развития лишь качественным образом, так как очень сложно оценить в одних количественных единицах разные функции и факторы.

Повышение идеальности технических систем может происходить как в рамках существующей конструктивной концепции, так и в результате радикального изменения конструкции, принципа действия системы.

Повышение идеальности в рамках существующей конструктивной концепции связано с количественными изменениями в системе и реализуется как с помощью компромиссных решений, так и путем решения изобретательских задач низших уровней, замены некоторых подсистем на другие, известные.

Использование ресурсов технических систем является одним из важных механизмов повышения идеальности как общей, так и частной.

Во многих случаях необходимые для решения задачи ресурсы имеются в системе в пригодном для применения виде — готовые ресурсы. Нужно только догадаться, как их использовать. Но нередки ситуации, когда имеющиеся ресурсы могут быть использованы только после определенной подготовки: накопления, видоизменения и т. п. Такие ресурсы называются производными. Нередко в качестве ресурсов, позволяющих совершенствовать техническую систему, решить изобретательскую задачу, используются также физические и химические свойства имеющихся веществ — способность претерпевать фазовые переходы, менять свои свойства, вступать в химические реакции и т. п.

Рассмотрим ресурсы, наиболее часто используемые при совершенствовании технических систем.

Ресурсы вещества готовые - это любые материалы, из которых состоит система и ее окружение, выпускаемая ею продукция, отходы и т. п., которые, в принципе, можно использовать дополнительно.

Пример 1. На заводе, выпускающем керамзит, последний используют в качестве набивки фильтра для очистки технической воды.

Пример 2. На севере в качестве набивки фильтров для очистки воздуха используют снег.

Ресурсы вещества производные - вещества, получаемые в результате любых воздействий на готовые вещественные ресурсы.

Пример. Для защиты труб от разрушения серосодержащими отходами нефтеперегонного производства через трубы предварительно прокачивают нефть, а потом продувкой горячего воздуха окисляют оставшуюся на внутренней поверхности нефтяную пленку до лакообразного состояния.

Ресурсы энергии готовые - любая энергия, нереализованные запасы которой имеются в системе или ее окружении.

Пример. Абажур для настольной лампы вращается благодаря конвекционному потоку воздуха, создаваемому теплом лампы.

Ресурсы энергии производные - энергия, получаемая в результате преобразования готовых энергетических ресурсов в другие виды энергии, либо изменения направления их действия, интенсивности и других характеристик.

Пример.

Свет электрической дуги, отраженный зеркалом, прикрепленным к маске сварщика, освещает место сварки.

Ресурсы информации готовые - информация о системе, которая может быть получена с помощью полей рассеяния (звукового, теплового, электромагнитного и т. п.) в системе либо с помощью веществ, проходящих через систему либо выходящих из нее (продукция, отходы).

Пример. Известен способ определения марки стали и параметров ее обработки по летящим при обработке искрам.

Ресурсы информации производные — информация, получаемая в результате преобразования непригодной для восприятия или обработки информации в полезную, как правило, с помощью различных физических или химических эффектов.

Пример. При возникновении и развитии трещин в работающих конструкциях возникают слабые звуковые колебания. Специальные акустические установки улавливают звуки в широком диапазоне, обрабатывают их с помощью ЭВМ и с высокой точностью оценивают характер возникшего дефекта и его опасность для конструкции.

Ресурсы пространства готовые — имеющееся в системе или ее окружении свободное, незанятое место. Эффективный способ реализации этого ресурса — использование пустоты вместо вещества.

Пример 1. Для хранения газа используют естественные полости в земле.

Пример 2. Для экономии места в вагоне поезда дверь купе вдвигается в межстеночное прост-ранство.

Ресурсы пространства производные - дополнительное пространство, получаемое в результате использования разного рода геометрических эффектов.

Пример. Использование ленты Мебиуса позволяет не менее чем в два раза повысить эффективную длину любых кольцевых элементов: ременных шкивов, магнитофонных лент, ленточных ножей и т. п.

Ресурсы времени готовые - временные промежутки в технологическом процессе, а также до или после него, между процессами, не использованные ранее или использованные частично.

Пример 1. В процессе транспортировки нефти по трубопроводу производится ее обезвоживание и обессоливание.

Пример 2. Танкер, перевозящий нефть, одновременно ведет ее переработку.

Ресурсы времени производные - временные промежутки, получаемые в результате ускорения, замедления, прерывания или превращения в непрерывные протекающих процессов.

Пример. Использование ускоренной или замедленной съемки для быстротекущих или очень медленных процессов.

Ресурсы функциональные готовые - возможности системы и ее подсистем выполнять по совместительству дополнительные функции, как близкие к основным, так и новые, неожиданные (сверхэффект).

Пример. Было установлено, что аспирин разжижает кровь, и потому в некоторых случаях оказывает вредное действие. Это его свойство было использовано для профилактики и лечения инфарктов.

Ресурсы функциональные производные - возможности системы выполнять по совместительству дополнительные функции после некоторых изменений.

Пример 1. В пресс-форме для отливки деталей из термопластов литниковые каналы выполняются в виде полезных изделий, например, букв азбуки.

Пример 2. Подъемный кран при помощи несложного приспособления сам поднимает свои подкрановые блоки при ремонте.

Системные ресурсы ×- новые полезные свойства системы или новые функции, которые могут быть получены при изменении связей между подсистемами или при новом способе объединения систем.

Пример. Технология изготовления стальных втулок предусматривала их точение из прутка, сверление внутреннего отверстия и поверхностную закалку. При этом из-за закалочных напряжений на внутренней поверхности нередко возникали микротрещины. Было предложено изменить порядок операций — сперва точить наружную поверхность, потом проводить поверхностную закалку, а потом высверливать внутренний слой материала. Теперь напряжения исчезают вместе с высверленным материалом.

Для облегчения поиска и использования ресурсов можно воспользоваться алгоритмом поиска ресурсов (рис. 3.3).

Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к идеальности. Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

· повышение количества выполняемых функций,

· «свертывание» в рабочий орган,

· переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить S-образной кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.

2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.

3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.



В качестве примера рассмотрим паровоз. Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД, конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами, и электровозами. Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков, предкрылков, интерцепторов, системы изменения стреловидности и проч.

Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

Другие примеры:

· В 10-20 раз снижается сопротивление движению плуга, если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.

· Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.

· Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

· Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

Вопрос 3. Законы развития технических систем. Закон сквозного прохода энергию. Закон опережающего развития рабочего органа. Закон перехода «моно - би - поли». Закон перехода с макро- на микроуровень

Сформулировал законы развития технических систем, знание которых помогает инженерам предсказывать пути возможных дальнейших улучшений продуктов:

  1. Закон увеличения степени идеальности системы.
  2. Закон S-образного развития технических систем.
  3. Закон динамизации.
  4. Закон полноты частей системы.
  5. Закон сквозного прохода энергии.
  6. Закон опережающего развития рабочего органа.
  7. Закон перехода «моно - би - поли».
  8. Закон перехода с макро- на микроуровень.

Самый важный закон рассматривает идеальность системы - одно из базовых понятий в ТРИЗ.

Описание законов

Закон увеличения степени идеальности системы

Техническая система в своём развитии приближается к идеальности . Достигнув идеала, система должна исчезнуть, а её функция продолжать выполняться.

Основные пути приближения к идеалу:

  • повышение количества выполняемых функций,
  • «свертывание» в рабочий орган,
  • переход в надсистему.

При приближении к идеалу техническая система вначале борется с силами природы, затем приспосабливается к ним и, наконец, использует их для своих целей.

Закон увеличения идеальности наиболее эффективно применяется к тому элементу, который непосредственно расположен в зоне возникновения конфликта или сам порождает нежелательные явления. При этом повышение степени идеальности, как правило, осуществляется применением незадействованных ранее ресурсов (веществ, полей), имеющихся в зоне возникновения задачи. Чем дальше от зоны возникновения конфликта будут взяты ресурсы, тем в меньшей степени удастся продвинуться к идеалу.

Закон S-образного развития технических систем

Эволюцию множества систем можно изобразить S-образной кривой, показывающей, как меняются во времени темпы её развития. Выделяются три характерных этапа:

  1. «детство» . Идёт, как правило, достаточно долго. В этот момент идёт проектирование системы, её доработка, изготовление опытного образца, подготовка к серийному выпуску.
  2. «расцвет» . Она бурно совершенствуется, становится всё более мощной и производительной. Машина выпускается серийно, её качество улучшается и спрос на неё растёт.
  3. «старость» . С какого-то момента улучшать систему становится всё труднее. Мало помогают даже крупные увеличения ассигнований. Несмотря на усилия конструкторов, развитие системы не поспевает за всё возрастающими потребностями человека. Она пробуксовывает, топчется на месте, меняет свои внешние очертания, но остаётся такой, какая есть, со всеми своими недостатками. Все ресурсы окончательно выбраны. Если попытаться в этот момент искусственно увеличивать количественные показатели системы или развивать её габариты, оставляя прежний принцип, то сама система вступает в конфликт с окружающей средой и человеком. Она начинает больше приносить вреда, чем пользы.

В качестве примера рассмотрим паровоз . Вначале был достаточно долгий экспериментальный этап с единичными несовершенными экземплярами, внедрение которых вдобавок сопровождалось сопротивлением общества. Затем последовало бурное развитие термодинамики, совершенствование паровых машин, железных дорог, сервиса - и паровоз получает публичное признание и инвестиции в дальнейшее развитие. Затем, несмотря на активное финансирование, произошёл выход на природные ограничения: предельный тепловой КПД , конфликт с окружающей средой, неспособность увеличивать мощность без увеличения массы - и, как следствие, в области начался технологический застой. И, наконец, произошло вытеснение паровозов более экономичными и мощными тепловозами , и электровозами . Паровой двигатель достиг своего идеала - и исчез. Его функции взяли на себя ДВС и электромоторы - тоже вначале несовершенные, затем бурно развивающиеся и, наконец, упирающиеся в развитии в свои природные пределы. Затем появится другая новая система - и так бесконечно.

Закон динамизации

Надёжность, стабильность и постоянство системы в динамичном окружении зависят от её способности изменяться. Развитие, а значит и жизнеспособность системы, определяется главным показателем: степенью динамизации , то есть способностью быть подвижной, гибкой, приспосабливаемой к внешней среде, меняющей не только свою геометрическую форму, но и форму движения своих частей, в первую очередь рабочего органа. Чем выше степень динамизации, тем, в общем случае, шире диапазон условий, при которых система сохраняет свою функцию. Например, чтобы заставить крыло самолёта эффективно работать в существенно разных режимах полёта (взлёт, крейсерский полёт, полёт на предельной скорости, посадка), его динамизируют путём добавления закрылков , предкрылков , интерцепторов , системы изменения стреловидности и проч.

Однако, для подсистем закон динамизации может нарушаться - иногда выгоднее искусственно уменьшить степень динамизации подсистемы, тем самым упростив её, а меньшую стойкость/приспособляемость компенсировать созданием стабильной искусственной среды вокруг неё, защищённой от внешних факторов. Но в итоге совокупная система (над-система) всё же получает большую степень динамизации. Например, вместо того, чтобы приспосабливать трансмиссию к загрязнению путём её динамизации (самоочистка, самосмазка, перебалансировка), можно поместить её в герметичный кожух, внутри которого создана среда, наиболее благоприятная для движущихся частей (прецизионные подшипники, масляный туман, подогрев и проч.)

Другие примеры:

  • В 10-20 раз снижается сопротивление движению плуга , если его лемех вибрирует с определенной частотой в зависимости от свойств грунта.
  • Ковш экскаватора, превратившись в роторное колесо, породил новую высокоэффективную систему добычи полезных ископаемых.
  • Автомобильное колесо из жёсткого деревянного диска с металлическим ободом стало подвижным, мягким и эластичным.

Закон полноты частей системы

Любая техническая система, самостоятельно выполняющая какую-либо функцию, имеет четыре основные части - двигатель, трансмиссию, рабочий орган и средство управления. Если в системе отсутствует какая-либо из этих частей, то её функцию выполняет человек или окружающая среда.

Двигатель - элемент технической системы, являющийся преобразователем энергии, необходимой для выполнения требуемой функции. Источник энергии может находиться либо в системе (например, бензин в баке для двигателя внутреннего сгорания автомобиля), либо в надсистеме (электроэнергия из внешней сети для электродвигателя станка).

Трансмиссия - элемент, передающий энергию от двигателя к рабочему органу с преобразованием её качественных характеристик (параметров).

Рабочий орган - элемент, передающий энергию на обрабатываемый объект, и завершающий выполнение требуемой функции.

Средство управления - элемент, регулирующий поток энергии к частям технической системы и согласующий их работу во времени и пространстве.

Анализируя любую автономно работающую систему, будь то холодильник, часы, телевизор или авторучка, везде можно видеть эти четыре элемента.

  • Фрезерный станок. Рабочий орган: фреза. Двигатель: электродвигатель станка. Всё что находится между электродвигателем и фрезой можно считать трансмиссией. Средство управления - человек-оператор, рукоятки и кнопки, или программное управление (станок с программным управлением). В последнем случае программное управление «вытеснило» человека-оператора из системы.

Закон сквозного прохода энергии

Итак, любая работающая система состоит из четырёх основных частей и любая из этих частей является потребителем и преобразователем энергии. Но мало преобразовать, надо ещё без потерь передать эту энергию от двигателя к рабочему органу, а от него - на обрабатываемый объект. Это закон сквозного прохода энергии. Нарушение этого закона ведёт к возникновению противоречий внутри технической системы, что в свою очередь порождает изобретательские задачи.

Главным условием эффективности технической системы с точки зрения энергопроводимости является равенство способностей частей системы по принятию и передаче энергии.

  • Импедансы передатчика , фидера и антенны должны быть согласованы - в этом случае в системе устанавливается режим бегущей волны , наиболее эффективный для передачи энергии. Рассогласование ведёт к появлению стоячих волн и диссипации энергии.

Первое правило энергопроводимости системы

полезной функцией , то для повышения её работоспособности в местах контактирования должны быть вещества с близкими или одинаковыми уровнями развития.

Второе правило энергопроводимости системы

Если элементы системы при взаимодействии образуют энергопроводящую систему с вредной функцией , то для её разрушения в местах контактирования элементов должны быть вещества с различными или противоположными уровнями развития.

  • При застывании бетон сцепляется с опалубкой, и её трудно потом отделить. Две части хорошо согласовались между собой по уровням развития вещества - оба твёрдые, шероховатые, неподвижные и т. д. Образовалась нормальная энергопроводящая система. Чтобы не допустить её образования, нужно максимальное рассогласование веществ, например: твёрдое - жидкое, шероховатое - скользкое, неподвижное - подвижное. Здесь может быть несколько конструктивных решений - образование прослойки воды, нанесение специальных скользких покрытий, вибрация опалубки и др.

Третье правило энергопроводимости системы

Если элементы при взаимодействии друг с другом образуют энергопроводящую систему с вредной и полезной функцией , то в местах контактирования элементов должны быть вещества, уровень развития которых и физико-химические свойства изменяются под воздействием какого-либо управляемого вещества или поля.

  • Согласно этому правилу выполнено большинство устройств в технике, где требуется соединять и разъединять энергопотоки в системе. Это различные муфты включения в механике, вентили в гидравлике, диоды в электронике и многое другое.

Закон опережающего развития рабочего органа

В технической системе основной элемент - рабочий орган. И чтобы его функция была выполнена нормально, его способности по усвоению и пропусканию энергии должны быть не меньше, чем двигатель и трансмиссия. Иначе он или сломается, или станет неэффективным, переводя значительную часть энергии в бесполезное тепло. Поэтому желательно, чтобы рабочий орган опережал в своём развитии остальные части системы, то есть обладал большей степенью динамизации по веществу, энергии или организации.

Часто изобретатели совершают ошибку, упорно развивая трансмиссию, управление, но не рабочий орган. Такая техника, как правило, не даёт значительного прироста экономического эффекта и существенного повышения КПД.

  • Производительность токарного станка и его техническая характеристика оставались почти неизменными на протяжении многих лет, хотя интенсивно развивались привод, трансмиссия и средства управления, потому что сам резец как рабочий орган оставался прежним, то есть неподвижной моносистемой на макроуровне. С появлением вращающихся чашечных резцов производительность станка резко поднялась. Ещё больше она возросла, когда была задействована микроструктура вещества резца: под действием электрического тока режущая кромка резца стала колебаться до нескольких раз в секунду. Наконец, благодаря газовым и лазерным резцам, полностью изменившим облик станка, достигнута невиданная ранее скорость обработки металла.

Закон перехода «моно - би - поли»

Первый шаг - переход к бисистемам. Это повышает надежность системы. Кроме того, в бисистеме появляется новое качество, которое не было присуще моносистеме. Переход к полисистемам знаменует собой эволюционный этап развития, при котором приобретение новых качеств происходит только за счет количественных показателей. Расширенные организационные возможности расположения однотипных элементов в пространстве и времени позволяют полнее задействовать их возможности и ресурсы окружающей среды.

  • Двухмоторный самолет (бисистема) надёжней своего одномоторного собрата и обладает большей маневренностью (новое качество).
  • Конструкция комбинированного велосипедного ключа (полисистема) привела к заметному снижению расхода металла и уменьшению габаритов в сравнении с группой отдельных ключей.
  • Лучший изобретатель - природа - продублировала особо важные части организма человека: у человека два легких, две почки, два глаза и т. д.
  • Многослойная фанера намного прочнее доски тех же размеров.

Но на каком-то этапе развития в полисистеме начинают появляться сбои. Упряжка из более чем двенадцати лошадей становится неуправляемой, самолет с двадцатью моторами требует многогократного увеличения экипажа и трудноуправляем. Возможности системы исчерпались. Что дальше? А дальше полисистема снова становится моносистемой… Но на качественно новом уровне. При этом новый уровень возникает только при условии повышения динамизации частей системы, в первую очередь рабочего органа.

  • Вспомним тот же велосипедный ключ. Когда динамизировался его рабочий орган, т. е. губки стали подвижными, появился разводной ключ. Он стал моносистемой, но в то же время способным работать с многими типоразмерами болтов и гаек.
  • Многочисленные колёса вездеходов превратились в одну подвижную гусеницу.

Закон перехода с макро- на микроуровень

Переход с макро- на микроуровень - главная тенденция развития всех современных технических систем.

Для достижения высоких результатов задействуются возможности структуры вещества. Вначале используется кристаллическая решетка, затем ассоциации молекул, единичная молекула, часть молекулы, атом и, наконец, части атома.

  • В погоне за грузоподъёмностью на закате поршневой эры самолёты снабжались шестью, двенадцатью и более моторами. Затем рабочий орган - винт - всё же перешел на микроуровень, став газовой струёй.

См. также

  • Вепольный анализ

Источники

  • Законы развития систем Альтшуллер Г. С. Творчество как точная наука. - М.: «Советское радио», 1979. - С. 122-127.
  • «Линии жизни» технических систем © Альтшуллер Г. С., 1979 (Творчество как точная наука. - М.: Сов. радио, 1979. С. 113-119.)
  • Система законов развития техники (основы теории развития технических систем) Издание 2-е исправленное и дополненное © Юрий Петрович Саламатов, 1991-1996 г.

Wikimedia Foundation . 2010 .

Смотреть что такое "Законы развития технических систем" в других словарях:

    ЗАКОНЫ РАЗВИТИЯ ТЕХНИЧЕСКИХ СИСТЕМ (по ТРИЗ) - – объективные законы, отражающие существенные и повторяющиеся особенности развития технических систем. Каждый из законов описывает какую либо конкретную тенденцию развития и показывает, как её использовать при прогнозировании развития,… …

    ЗАКОНЫ И ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ТЕХНИКИ - – законы и закономерности, которые в зависимости от исторического времени смены моделей и поколений технических систем отражают и определяют для отдельных сходных технических систем объективно существующие, устойчивые, повторяющиеся связи и… … Философия науки и техники: тематический словарь

    ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году это технология творчества, основанная на идее о том, что «изобретательское творчество… … Википедия

    - (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия

Анализ изобретений показывает, что развитие всех систем идёт в направлении идеализации , то есть элемент или система уменьшается или исчезает, а её функция сохраняется.

Громоздкие и тяжёлые электронно-лучевые компьютерные мониторы заменяются лёгкими и плоскими жидкокристаллическими. Скорость процессора увеличивается в сотни раз, но его размер и потребление энергии не повышаются. Сотовые телефоны усложняются, но их размер уменьшается.

$ Подумайте об идеализации денег.

Элементы АРИЗ

Рассмотрим базовые шаги Алгоритма решения изобретательских задач (АРИЗ).

1. Началом анализа является составление структурной модели ТС (как описано выше).

2. Затем выделяется главное техническое противоречие (ТП).

Техническими противоречиями (ТП) называют такие взаимодействия в системе, когда положительное действие одновременно вызывает и негативное действие; или если введение/усиление положительного действия, либо устранение/ослабление негативного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом.

Для увеличения скорости винтового самолёта надо увеличить мощность двигателя, но увеличение мощности двигателя снизит скорость.

Часто для выявления главного ТП требуется проанализировать причинно-следственную цепочку (ПСЦ) связей и противоречий.

Продолжим ПСЦ для противоречия «увеличение мощности двигателя снизит скорость». Для увеличения мощности двигателя надо увеличить объём двигателя, для чего надо увеличить массу двигателя, что приведёт к дополнительному расходу топлива, что увеличит массу самолёта, что сведёт на нет выигрыш в мощности и снизит скорость.

3. Производится мысленное отделение функций (свойств)от объектов .

В анализе любого элемента системы нас интересует не он сам, а его функция, то есть способность выполнять или воспринимать определённые воздействия. Для функций также существует причинно-следственная цепочка.

Главная функция двигателя – не крутить винт, а толкать самолёт. Нам нужен не сам двигатель, а только его способность толкать самолёт. Точно так же нас интересует не телевизор, а его способность воспроизводить изображение.

4. Производится усиление противоречия .

Противоречие следует мысленно усилить, довести до предела. Много – всё, мало – ничего.

Масса двигателя вообще не увеличивается, но скорость самолёта возрастает.

5. Определяются Оперативная зона (ОЗ) и Оперативное время (ОВ).

Следует выделить тот точный момент времени и пространства, в котором возникает противоречие.

Противоречие массы двигателя и самолёта возникает всегда и везде. Противоречие между людьми, желающими попасть на самолёт, возникает только в определённое время (на праздники) и в определённых точках пространства (некоторые рейсы).

6. Формулируется идеальное решение .

Идеальное решение (или идеальный конечный результат) звучит так: икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет вредное воздействие в течение оперативного времени (ОВ) и в пределах оперативной зоны (ОЗ), сохраняя полезное действие.

Икс-элемент заменяет газовую плиту. Функция плиты нагревать пищу в домашних условиях в течение нескольких минут остаётся, но опасности взрыва газа или отравления газом нет. Икс-элемент меньше газовой плиты. Икс-элемент – микроволновая печь

7. Определяются имеющиеся ресурсы .

Для разрешения противоречия нужны ресурсы, то есть способности других уже существующих элементов системы выполнить интересующую нас функцию (воздействие).

Ресурсы могут быть найдены:

а) внутри системы,

б) за пределами системы, во внешней среде,

в) в надсистеме.

Для перевозки пассажиров в пиковые дни можно найти следующие ресурсы:

а) внутри системы – уплотнить расположение кресел в самолёте,

б) за пределами системы – поставить на рейсы дополнительные самолёты,

в) в надсистеме (для авиации – транспорт) – использовать железную дорогу.

8. Применяются способы разделения противоречий .

Разделить противоречивые свойства можно следующими способами:

– в пространстве,

– во времени,

– на уровнях системы, подсистемы и надсистемы,

– объединением или делением с другими системами.

Предотвращение столкновения машин и пешеходов. Во времени – светофор, в пространстве – подземный переход.

Суммируя шаги АРИЗ:

Структурная модель – Поиск противоречия – Отделение свойств от объектов – Усиление противоречия – Определение точки времени и пространства – Идеальное решение – Поиск ресурсов – Разделение противоречий

Метод моделирования «маленькими человечками»

Метод моделирования "маленькими человечками" (метод ММЧ) предназначен для снятия психологической инерции. Работу элементов системы, участвующих в противоречии, схематически представляют в виде рисунка. На рисунке действует большое число "маленьких человечков" (группа, несколько групп, "толпа"). Каждая из групп выполняет одно из противоречивых действий элемента.

Если представить двигатель самолёта в виде двух групп человечков, то одна из них будет тянуть самолёт вперёд и вверх (тяга), а вторая – вниз (масса).

Если представить газовую плиту по ММЧ, то одна группа человечков будет нагревать чайник, а вторая – сжигать нужный человеку кислород.

$ Попробуйте представить деньги в системе рыночной экономики в виде маленьких человечков.

Приёмы разрешения противоречий

Давайте проведём небольшую разминку воображения. В странах капитализма XIX века существовали внутренние классовые противоречия, главное из которых – между богатством одних групп людей (классов) и нищетой других. Проблемой были и глубокие экономические кризисы, депрессии. Развитие рыночной системы в XX веке позволило преодолеть или сгладить эти противоречия в странах Запада.

В ТРИЗ обобщены сорок приёмов разрешения противоречий. Посмотрим, как некоторые из них были применены к системе "капитализм XIX века".

Приём Вынесения

Отделить от объекта "мешающую" часть ("мешающее" свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

Мешающее свойство – нищета, нужное свойство – богатство. Нищета вынесена за границы стран золотого миллиарда, богатство сосредоточено в их границах.

Приём Предварительного Действия

Заранее выполнить требуемое изменение объекта (полностью или хотя бы частично).

Объект – сознание нищих и эксплуатируемых. Если сознание заранее обрабатывать, то нищие не будут считать себя нищими и эксплуатируемыми.

Приём «Заранее Подложенной Подушки»

Компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

Создание системы социального страхования и пособий по безработице, то есть аварийных средств на время кризисов.

Приём Копирования

а) Вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии.

б) Заменить объект или систему объектов их оптическими копиями (изображениями).

Вместо качественных товаров можно продавать по тем же ценам дешёвые китайские. Вместо физических товаров продавать телевизионные и рекламные образы.

Приём Замены Дорогой Долговечности Дешёвой Недолговечностью

Заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

Согласно экономической теории, причина депрессий и падения прибыли – в падении спроса. Если сделать товары дешёвыми и недолговечными, то можно даже снизить продажную цену. При этом и прибыль сохранится, и спрос будет постоянно поддерживаться.

Герой нашего времени

Заканчивая с техникой и переходя к следующей главе, давайте порадуемся вместе с безымянным героем нашего времени, автором нижеследующего произведения, найденного на просторах Интернет. Сравните, чему посвящались оды в предыдущие века.

Ода к радости. От денег.

Я, просыпаясь, улыбаюсь,

И засыпая, улыбаюсь,

И одеваясь, улыбаюсь,

И раздеваясь, улыбаюсь.

Все в этой жизни мне по кайфу:

Печаль светла, легки натуги,

Прекрасны вина, вкусны яства,

Друзья честны, нежны подруги.

Быть может, кто-то не поверит,

Что так живут на свете белом.

Что, все желаете проверить?

Уж так и быть, скажу, в чем дело.

Открыл источник вдохновенья

Зовущий сильно, непреклонно.

Чудесное его названье – деньги,

Звучит свежо и утонченно.

Люблю я денежные знаки,

Их вид, и запах, и шуршанье,

Их получать без всякой драки,

И им оказывать вниманье.

Как глуп я был все эти годы,

Заветной цели не имея,

Терпел крушенья и невзгоды,

Пока дензнак не возлелеял!

Молюсь я честно на Мамону,

И в том греха совсем не вижу,

И всем советую резонно

Забыть совдеповскую жижу!

Все рождены для вдохновенья,

Все жить в любви имеют право,

Возлюбим братья, наши деньги.

Деньгам не нашим – тоже слава!

Как чист и ясен смысл денег,

И сам себе эквивалентен,

Он тот же будет в понедельник

И тот же будет в воскресенье.

Теперь люблю я деньги тратить

И превращать в любые блага,

А если вдруг мне их не хватит –

Не загрущу под белым флагом!

Все так же радостно и звонко

Их позову, найду их вновь

С беспечной легкостью ребенка...

У нас – взаимная любовь!


Глава 2. Наука и Религия.

Понравилась статья? Поделиться с друзьями: